A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection.
نویسندگان
چکیده
Caspases play an important role as mediators of cell death in acute and chronic neurological disorders. Although peptide inhibitors of caspases provide neuroprotection, they have to be administered intracerebroventricularly because they cannot cross the blood-brain barrier (BBB). Herein, we present a nanocarrier system that can transfer chitosan nanospheres loaded with N-benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethyl ketone (Z-DEVD-FMK), a relatively specific caspase-3 inhibitor, across BBB. Caspase-3 was chosen as a pharmacological target because of its central role in cell death. Polyethylene glycol-coated nanospheres were conjugated to an anti-mouse transferrin receptor monoclonal antibody (TfRMAb) that selectively recognizes the TfR type 1 on the cerebral vasculature. We demonstrate with intravital microscopy that this nanomedicine is rapidly transported across the BBB without being measurably taken up by liver and spleen. Pre- or post-treatment (2 h) with intravenously injected Z-DEVD-FMK-loaded nanospheres dose dependently decreased the infarct volume, neurological deficit, and ischemia-induced caspase-3 activity in mice subjected to 2 h of MCA occlusion and 24 h of reperfusion, suggesting that they released an amount of peptide sufficient to inhibit caspase activity. Similarly, nanospheres inhibited physiological caspase-3 activity during development in the neonatal mouse cerebellum on postnatal day 17 after closure of the BBB. Neither nanospheres functionalized with TfRMAb but not loaded with Z-DEVD-FMK nor nanospheres lacking TfRMAb but loaded with Z-DEVD-FMK had any effect on either paradigm, suggesting that inhibition of caspase activity and subsequent neuroprotection were due to efficient penetration of the peptide into brain. Thus, chitosan nanospheres open new and exciting opportunities for brain delivery of biologically active peptides that are useful for the treatment of CNS disorders.
منابع مشابه
Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury
Objective(s):Estrogen (E2) has neuroprotective effects on blood-brain-barrier (BBB) after traumatic brain injury (TBI). In order to investigate the roles of estrogen receptors (ERs) in these effects, ER-α antagonist (MPP) and, ER-β antagonist (PHTPP), or non-selective estrogen receptors antagonist (ICI 182780) were administered. Materials and Methods: Ovariectomized rats were divided into 10 gr...
متن کاملC-type natriuretic peptide-modified lipid vesicles: fabrication and use for the treatment of brain glioma
Chemotherapy of brain glioma faces a major obstacle owing to the inability of drug transport across the blood-brain barrier (BBB). Besides, neovasculatures in brain glioma site result in a rapid infiltration, making complete surgical removal virtually impossible. Herein, we reported a novel kind of C-type natriuretic peptide (CNP) modified vinorelbine lipid vesicles for transferring drug across...
متن کاملDoes inhibition of angiotensin function cause neuroprotection in diffuse traumatic brain injury?
Objective(s): Neuroprotection is created following the inhibition of angiotensin II type 1 receptor (AT1R). Therefore, the purpose of this research was examining AT1R blockage by candesartan in diffuse traumatic brain injury (TBI). Materials and Methods: Male rats were assigned into sham, TBI, vehicle, and candesartan groups. Candesartan (0.3 mg/kg) or vehicle was administered IP, 30 min post-T...
متن کاملP 61: MicroRNA as a Therapeutic Tool to Prevent Blood Brain Barrier Dysfunction in Neuroinflammation
Endothelial cells present in brain are unique and differ from other peripheral tissues in a number of ways, which ensures specific brain endothelial barrier properties. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation. Various microRNAs (miRNA) have been discovered in different cellular components of the blood bran barrier (BBB). miRNAs a...
متن کاملMethazolamide improves neurological behavior by inhibition of neuron apoptosis in subarachnoid hemorrhage mice
Subarachnoid hemorrhage (SAH) results in significant nerve dysfunction, such as hemiplegia, mood disorders, cognitive and memory impairment. Currently, no clear measures can reduce brain nerve damage. The study of brain nerve protection after SAH is of great significance. We aim to evaluate the protective effects and the possible mechanism of methazolamide in C57BL/6J SAH animal model in vivo a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 44 شماره
صفحات -
تاریخ انتشار 2009